METAL-ORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 1539-1542

> Organometallic Selenolates. VII. (Benzyl-selenolato-Se)tricarbonyl $\boldsymbol{\eta}^{5}$-cyclopentadienyl)molybdenum(II) and $\operatorname{Bis}\left[1,2\left(\eta^{5}\right)\right.$ -cyclopentadienyl]-di- μ-ethyIselenolato-di-μ-selenido-dimolybdenum(IV)(Mo-Mo) \dagger

Carsten Thöne, Peter G. Jones and Jörg Laube
Institut fir Analytische und Anorganische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: thoene@xray36. anchem.nat.tu-bs.de

(Received 17 April 1997; accepted 20 May 1997)

Abstract

Compound (1), $\left[\mathrm{Mo}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Se}\right)(\mathrm{CO})_{3}\right]$, is monomeric in the solid state. The $\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{MoSe}$ moiety (where Cp is cyclopentadienyl) displays a 'pianostool' arrangement with an Mo-Se bond length of 2.6294 (4) \AA and an essentially ideal tetrahedral bond angle at selenium [$109.74(8)^{\circ}$]. The binuclear compound (2), $\left[\mathrm{Mo}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Se}\right)_{2}(\mathrm{Se})_{2}\right]$, consists of linear $\mathrm{Cp}-\mathrm{Mo}-\mathrm{Mo}-\mathrm{Cp}$ moieties with $\mathrm{Mo}=\mathrm{Mo}$ double bonds, which are quadruply bridged by two pairs of selenido and ethylselenolato ligands.

Comment

Organoselenolato and selenido complexes of transition metals represent a growing field of current interest in structural chemistry because of the variety of features that can be observed in this class of compounds. Recently, we started an investigation of new synthetic routes to organoselenolato complexes (Eikens, Kienitz, Jones \& Thöne, 1994; Eikens, Jäger, Jones \& Thöne, 1996; Jones \& Thöne, 1996; Eikens, Jäger, Jones, Laube \& Thöne, 1996; Jones, Laube \& Thöne, 1997; Eikens, Jones \& Thöne, 1997) and present here the crystal structures of the two organoselenolato molybdenum complexes $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Se}\right)\right]$, (1), and $\left[\mathrm{Mo}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Se}\right)_{2}(\mu-\mathrm{Se})_{2}\right]$, (2).

(1)

(2)
\dagger Part VI: Eikens, Jones \& Thöne (1997).
© 1997 International Union of Crystallography

Compound (1) crystallizes in the monoclinic space group $P 2_{1} / c$ with one formula unit in the asymmetric unit. A comparison with the analogous tungsten complex (Eikens et al., 1994) reveals that the structures are essentially isostructural without being isotypic. The unit cells display very similar axis lengths, although the tungsten analogue crystallizes with two independent formula units in the triclinic crystal system $[\alpha=$ 91.99 (3), $\beta=95.01$ (3) and $\gamma=90.08(3)^{\circ}$]; a search for higher metric symmetry offered monoclinic P as a possible choice ($R_{\text {int }}=0.2$), but the deviations from monoclinic symmetry, both metric and Laue, are too high. Nevertheless, the coordinates of (1) and one independent molecule of its tungsten analogue correspond closely to each other.

Fig. 1. The structure of molecule (1) in the crystal. Radii are arbitrary. H atoms have been omitted. Ellipsoids are drawn at the 50% probability level.

The $\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{MoSe}$ moiety displays the commonly observed 'piano-stool' conformation with the corresponding angles 73.59 (7) (C2-Mo-Se), 76.02 (C3-$\mathrm{Mo}-\mathrm{Se}), 77.49$ (11)(C1-Mo-C2), 78.18 (10)(C1-Mo-C3), 101.63 (10) (C2-Mo-C3) and $135.96(7)^{\circ}$ ($\mathrm{Cl}-\mathrm{Mo}-\mathrm{Se}$), and an ideal tetrahedral angle at selenium [C4—Se-Mo $109.74(8)^{\circ}$].
Consistent with the above discussion, bond lengths and angles in (1) display approximately the same values as in the tungsten derivative (Eikens et al., 1994). The Mo-Se bond length [2.6294(4) A] indicates an $\mathrm{Mo}-\mathrm{Se}$ single bond, comparable with the corresponding bonds in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}\{\mu\right.$ $\left.\left.\mathrm{SeCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}\right\}\right]_{2}[2.6327(8) \AA$, average of four $\mathrm{Mo}-\mathrm{Se}$ bonds; Jones et al., 1997], (NEt_{4}) $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{Se}_{2}$] [2.598(1) and 2.596(1) \AA; Adel, Weller \& Dehnicke, 1988], [$\left.\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Mo}(\mathrm{NO})(\mu-$ $\left.\left.\mathrm{Se}_{2}\right)\right]_{2}[2.566(2), 2.634(2)$ and 2.648 (2) \AA; Herberhold, Jin \& Rheingold, 1993] and [$\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mu-$ $\mathrm{SePh})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$] [2.563(1), 2.565 (3) and 2.675 (2) \AA;

Rettenmaier, Weidenhammer \& Ziegler, 1981]. These values lie in the upper range of observed Mo-Se single bond lengths ($2.4-2.7 \AA$), which are strongly influenced by steric and electronic effects and also by the bonding mode of the Se-containing ligands.

The crystal structure of compound (2) is shown in Fig. 2. The molecule, which possesses crystallographic inversion symmetry, consists of a linear $\mathrm{Cp}-\mathrm{Mo}-\mathrm{Mo}-\mathrm{Cp}$ unit, with the π-bonded Cp ligands perpendicular to the $\mathrm{Mo}=\mathrm{Mo}$ bond. Consistent with the 18 valence-electron rule and the short Mo-Mo bond length of 2.6399 (6) \AA, this value can be assigned as an $\mathrm{Mo}=\mathrm{Mo}$ double bond (Endrich, Korswagen, Zahn \& Ziegler, 1982) and is comparable with that in the analogous phenylselenolato compound $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mu-\mathrm{Se})(\mu-\mathrm{SePh})\right]_{2}[2.653$ (2) \AA; Rakoczy, Schollenberger, Nuber \& Ziegler, 1994].

Fig. 2. The structure of molecule (2) in the crystal. Radii are arbitrary. Ellipsoids are drawn at the 50% probability level.

The $\mathrm{Mo}=$ Mo double bond is quadruply bridged by two alternate pairs of monoselenido and ethylselenolato ligands. The Mo atoms lie in an exact plane, with the Sel and Sel ${ }^{i}$ (selenido bridge) atoms on one side and Se 2 and $\mathrm{Se} 2^{\mathrm{i}}$ (ethylselenolato bridge) on the other side, with an interplanar angle of $85.44(2)^{\circ}$. Short contacts between the Se atoms are observed [$\mathrm{Se} 1 \cdots \mathrm{Se} 22.941$ (1) and Sel $\cdots \operatorname{Se}^{i} 3.185(1) \AA$; symmetry code: (i) $1-x$, $1-y,-z]$.

The Mo-Se bond lengths differ greatly because of the different coordination numbers of selenium. In the case of the selenido bridge, the values are $2.4816(5)$ (Mo-Sel) and $2.4838(5) \AA$ (MoSel ${ }^{\mathrm{i}}$). The corresponding Mo-SeEt bond lengths are 2.5902 (6) (Mo-Se2) and 2.5943 (5) A (Mo$\mathrm{Se} 2^{\mathrm{i}}$). The same bonding situation can be found in the phenyl-substituted derivative (Rakoczy et al.,
1994), which, however, has no crystallographic symmetry [Mo- $(\mu$-Se) $\quad 2.460$ (2), $\quad 2.465$ (2), $\quad 2.503$ (2) and 2.507 (2) A ; Mo- $(\mu$-SePh 2.583 (2), 2.597 (2), 2.607 (2) and 2.612 (2) A]. Associated with additional electronic influences, smaller values for the MoSe (selenido bridge) bond lengths were observed in trans $-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{O})(\mu-\mathrm{Se})\right]_{2}(M o-M o) \quad[2.452(1)$ and $2.448(1) \AA]$, cis $-\left[\left(\eta_{\circ}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{O})(\mu-\mathrm{Se})\right]_{2}(\mathrm{Mo}-$ Mo) $[2.428(1)-2.442(1) \AA]$, trans $-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{O})(\mu-\right.$ $\mathrm{Se})(\mu-\mathrm{O})]_{2}(\mathrm{Mo}-\mathrm{Mo})[2.449$ (1) and 2.453 (1) \AA; Gorzellik, Bock, Gang, Nuber \& Ziegler, 1991], cis-$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Mo}(\mathrm{O})(\mu-\mathrm{Se})\right]_{2}(\mathrm{Mo}-\mathrm{Mo})$ [2.422(2) and 2.431 (2) \AA; Endrich, Guggolz, Serhadle, Ziegler \& Korswagen, 1988] and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}{ }^{i} \mathrm{Pr}\right) \mathrm{Mo}\left(\mu_{3}-\mathrm{Se}\right)\right]_{4}(\mathrm{Mo}-$ Mo) (2.464 \AA, no s.u. given; Baird et al., 1991). The ethylselenolato Se atoms display almost tetrahedral bond angles [C11-Se2-Mo 113.11 (10) and C11$\mathrm{Se} 2-\mathrm{Mo}^{\mathrm{i}} 112.92(9)^{\circ}$], whereas the angles belonging to the $\mathrm{Mo}_{2} \mathrm{Se}_{4}$ core are acute [$\mathrm{Mo}-\mathrm{Se}-\mathrm{Mo}^{i} 64.234$ (13) and $\mathrm{Mo}-\mathrm{Se} 2-\mathrm{Mo}^{i} 61.219(12)^{\circ}$]. The accompanying angles at the Mo atoms are comparable (see Table 2).

Experimental

Compound (1) was obtained as the main product from the reaction of $\mathrm{LiSeMo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ according to Eikens et al. (1994). Single crystals were obtained by cooling a saturated ethanol solution to 253 K . Compound (2) was obtained as a by-product from the reaction of $\mathrm{LiSeSeMo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$ in the presence of $\mathrm{LiBEt}_{3} \mathrm{H}$ as reducing agent. Single crystals were obtained by layering a dichloromethane solution with hexanes.

Compound (1)

Crystal data
$\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Se}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=415.15$
Monoclinic
$P 2_{1} / c$
$a=9.8918(10) \AA$
$b=11.6789(12) \AA$
$c=12.6536(12) \AA$
$\beta=95.819(8)^{\circ}$
$V=1454.3(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 62
reflections
$\theta=5.5-12.5^{\circ}$
$\mu=3.407 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Tablet
$0.40 \times 0.36 \times 0.22 \mathrm{~mm}$
Red
$D_{x}=1.896 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction:
$\dot{\psi}$ scans (XEMP in
XSCANS; Siemens, 1994b)
$T_{\text {min }}=0.31, T_{\text {max }}=0.47$
3851 measured reflections
2553 independent reflections
2177 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.021$
$\theta_{\text {max }}=24.99^{\circ}$
$h=0 \rightarrow 11$
$k=-13 \rightarrow 5$
$l=-14 \rightarrow 14$
3 standard reflections every 247 reflections intensity decay: 2%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.042$
$S=0.976$
2553 reflections
182 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0205 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.265 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.325$ e $^{-3}$
Extinction correction:
SHELXL93
Extinction coefficient: 0.0019 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (1)
$\mathrm{Mo}-\mathrm{Cl}$
$\mathrm{Mo}-\mathrm{C} 3$
$\mathrm{Mo}-\mathrm{C} 2$
$\mathrm{Mo}-\mathrm{Cp}(\mathrm{Centre})$
$\mathrm{Mo}-\mathrm{Sc}$
$\mathrm{Cl}-\mathrm{Mo}-\mathrm{C} 3$
$\mathrm{Cl}-\mathrm{Mo}-\mathrm{C} 2$
$\mathrm{C} 3-\mathrm{Mo}-\mathrm{C} 2$
$\mathrm{Cl}-\mathrm{Mo}-\mathrm{Se}$
$\mathrm{C} 3-\mathrm{Mo}-\mathrm{Sc}$
$\mathrm{C} 2-\mathrm{Mo}-\mathrm{Se}$
$1.992(3)$
$1.995(3)$
$1.996(3)$
2.014
$2.6294(4)$
$78.18(10)$
$77.49(11)$
$101.63(10)$
$135.96(7)$
$76.02(7)$
$73.59(7)$
$\mathrm{Cl}-\mathrm{Ol}$
$\mathrm{C} 2-\mathrm{O} 2$
$\mathrm{C} 3-\mathrm{O} 3$
$\mathrm{Se}-\mathrm{C} 4$
$\mathrm{C} 4-\mathrm{Cl} 11$
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{Mo}$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Mo}$
$\mathrm{O} 3-\mathrm{C}-\mathrm{Mo}$
$\mathrm{C} 4-\mathrm{Se}-\mathrm{Mo}$
$\mathrm{C} 111-\mathrm{C} 4-\mathrm{Se}$
1.140 (3)
1.141 (3)
1.140 (3)
1.981 (2)
1.498 (3)
179.0 (2)
178.9 (2)
178.6 (2)
109.74 (8) 115.09 (17)

Compound (2)

Crystal data
$\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Se}\right)_{2}(\mathrm{Se})_{2}\right]$
$M_{r}=696.02$
Monoclinic
$P 21 / c$
$a=8.4036(15) \AA$
$b=15.376$ (3) \AA
$c=6.9712(12) \AA$
$\beta=99.092(8)^{\circ}$
$V=889.5$ (3) \AA^{3}
$Z=2$
$D_{x}=2.599 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction:
$\quad \psi$ scans $(X E M P$ in
$X S C A N S ; S i e m e n s, 1994 b)$
$T_{\min }=0.127, T_{\max }=0.317$
3101 measured reflections
1555 independent reflections
1497 reflections with
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=24.99^{\circ}$
$h=-9 \rightarrow 9$
$k=-18 \rightarrow 0$
$l=-8 \rightarrow 8$
3 standard reflections every 247 reflections intensity decay: 1%

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.093$
1554 reflections
93 parameters
H -atom parameters
constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0202 P)^{2}\right.$ $+0.1393 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 2. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$ for (2)

Mo...Cp(centre)	2.001	Mo-Mo'	2.6399 (6)
$\mathrm{Mo}-\mathrm{Sel}$	2.4816 (5)	$\mathrm{Se} 2-\mathrm{Cll}$	1.979 (3)
Mo-Sel ${ }^{\prime}$	2.4838 (5)	$\mathrm{Cll}-\mathrm{Cl} 2$	1.511 (5)
$\mathrm{Mo}-\mathrm{Se} 2$	2.5902 (6)	$\mathrm{Sc} 1-\mathrm{Se} 2$	2.941 (1)
$\mathrm{Mo}-\mathrm{Se} 2{ }^{1}$	2.5943 (5)	$\mathrm{Sel}-\mathrm{Se} 2{ }^{1}$	3.185 (1)
Sel - $\mathrm{Mo}-\mathrm{Sel}{ }^{\prime}$	115.766 (13)	$\mathrm{Mo}-\mathrm{Sel}-\mathrm{Mo}{ }^{\prime}$	64.234 (1.3)
Sel-Mo-Se2	70.860 (11)	$\mathrm{Cll}-\mathrm{Se} 2-\mathrm{Mo}$	113.11 (1)
Sel'-Mo-Se2	77.740 (15)	$\mathrm{Cll}-\mathrm{Se} 2-\mathrm{Mo}^{1}$	112.92 (9)
Sel-Mo-Se2 ${ }^{\text {1 }}$	77.70 (2)	$\mathrm{Mo}-\mathrm{Se} 2-\mathrm{Mo}^{\prime}$	61.219 (12)
$\mathrm{Se} 1^{\prime}-\mathrm{Mo}-\mathrm{Se}^{1}$	70.76 (2)	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{Se} 2$	111.1 (2)

Symmetry code: (i) $1-x, 1-y,-z$.
H atoms were included using rigid methyl groups (allowed to rotate but not tip) or a riding model.

For both compounds, data collection: XSCANS (Siemens, 1994b); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: XP (Siemens, 1994a); software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A . Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1338). Services for accessing these data are described at the back of the journal.

References

Adel, J., Weller, F. \& Dehnicke, K. (1988). J. Organomet. Chem. 347, 343-348.
Baird, P., Bandy, J. A., Green, M. L. H., Hamnett, A., Marseglia, E., Obertelli, D. S., Prout, K. \& Qin, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2377-2393.
Eikens, W., Jäger, S., Jones, P. G., Laube, J. \& Thöne, C. (1996). Chem. Ber. 129, 1275-1279.
Eikens, W., Jäger, S., Jones, P. G. \& Thönc. C. (1996). J. Organomet. Chem. 511, 67-75.
Eikens, W., Jones, P. G. \& Thöne, C. (1997). Z. Allg. Anorg. Chem. 623, 735-741.
Eikens, W., Kienitz, C., Jones, P. G. \& Thöne, C. (1994). J. Chem. Soc. Dalton Trans. pp. 3329-3330.
Endrich, K., Guggolz, E., Serhadle, O., Ziegler, M. L. \& Korswagen, R. P. (1988). J. Organomet. Chem. 349, 323-351.

Endrich, K., Korswagen, R., Zahn, T. \& Ziegler, M. L. (1982). Angew. Chem. Int. Ed. Engl. 21, 919-920.
Gorzellik, M., Bock, H., Gang, L., Nuber, B. \& Ziegler, M. L. (1991). J. Organomet. Chem. 412, 95-120.

Herberhold, M., Jin, G.-X. \& Rheingold, A. L. (1993). Z. Naturforsch. Teil B, 48, 1488-1498.
Jones, P. G., Laube, J. \& Thöne, C. (1997). Inorg. Chem. 36, $2097-$ 2102.

Jones, P. G. \& Thöne, C. (1996). Inorg. Chem. 35, 6625-6626.
Rakoczy, H., Schollenberger, M., Nuber, B. \& Ziegler, M. L. (1994). J. Organomet. Chem. 467, 217-222.

Rettenmaier, A., Weidenhammer, K. \& Ziegler, M. L. (1981). Z. Anorg. Allg. Chem. 473, 91-100.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1994b). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1542-1543

Oxo-1 $\kappa 0-\mu_{3}$-(pyridine-2-thiolato- $2 \kappa N$,3:4 $\kappa^{2} S$)-tri- μ_{3}-sulfido-1:2:3 $\kappa^{3} S$;1:2:4 $\kappa^{3} S$;2:3:4 $\kappa^{3} S$-tris(triphenylphosphine)-2 κ; ;$3 \kappa P ; 4 \kappa P$-tricoppermolybdenum

Quanming Wang, Xintao Wu,* Qun Huang, Tianlu Sheng and Ping Lin

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China. E-mail: wxt@ms.fjirsm.ac.cn
(Received 6 November 1996; accepted 6 March 1997)

Abstract

The title compound, $\left[\mathrm{MoO}\left\{\mu_{3}-\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right\}_{3}\left(\mu_{3}-\mathrm{S}\right)_{3}-\right.$ ($\mu_{3}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}$)], contains an incomplete cubane-like cluster core, $\left[\mathrm{MoCu}_{3} \mathrm{~S}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\right]^{2+}$, in which the S and N atoms of a pyridine-2-thiolato ligand bridge three Cu atoms.

Comment

Recently, some incomplete cubane-like heterometallic clusters belonging to the $M / \mathrm{Cu} / \mathrm{S}$ ($M=\mathrm{Mo}$ or W) system have been synthesized in our laboratory. For example, clusters containing the cores $\left[M_{2} \mathrm{CuS}_{4}\right]^{3+}$ (Zhu, Zheng \& Wu, 1990), $\left[\mathrm{MoCu}_{3} \mathrm{~S}_{3}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\right]^{2+}$ (Zhu, Du, Chen \& Wu, 1992) and $\left[\mathrm{WCu}_{3} \mathrm{~S}_{3}\left\{\mathrm{~S}_{2} \mathrm{P}\left(\mathrm{COEt}_{2}\right\}\right]^{2+}\right.$ (Du \& $\mathrm{Wu}, 1994)$ have been prepared. The structure of the title compound, (I), is similar to that of $\left[\mathrm{MoCu}_{3} \mathrm{~S}_{3}-\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{COEt}\right)\right](\mathrm{O})\left(\mathrm{PPh}_{3}\right)_{3}$, except that $\mathrm{S}_{2} \mathrm{COEt}^{-}$is replaced by a bidentate pyridine-2-thiolato ligand.

(I)

As shown in Fig. 1, the Mo atom in (I) has tetrahedral coordination, MoOS_{3}^{2-}; furthermore, each Cu atom is coordinated by a distorted tetrahedron of
two S atoms of tetradentate MoOS_{3}^{2-}, one P atom of PPh_{3} and one S (or N) atom of the pyridine-2-thiolato ligand. The average $\mathrm{Mo} \cdots \mathrm{Cu}, \mu_{3}-\mathrm{S}-\mathrm{Mo}$ and $\mu_{3}-$ S-Cu distances of 2.738 (2), 2.255 (3) and 2.310 (3) A., respectively, are comparable with the corresponding values of $2.735(1), 2.255(2)$ and 2.302 (2) \AA found in $\left[\mathrm{MoCu}_{3} \mathrm{~S}_{3}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\right](\mathrm{O})\left(\mathrm{PPh}_{3}\right)_{3}$. The mean $\mathrm{Cu}-\mathrm{S}$ bond length (of $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}^{-}$) is $2.458(3) \AA$ and the $\mathrm{Cu}-\mathrm{N}$ bond length is 2.103 (9) \AA.

Fig. 1. The molecular structure of (l) showing 40% probability displacement ellipsoids. For clarity, H atoms have been omitted. The phenyl C atoms are numbered sequentially around each ring.

Experimental

The title compound was synthesized by reaction of $\left[\mathrm{MoCu}_{2} \mathrm{~S}_{3}\right](\mathrm{O})\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NSCu}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Black crystals were obtained by evaporating the filtrate for several days after addition of 2-propanol.

Crystal data
$\left[\begin{array}{l}{\left[\mathrm{Cu}_{3} \mathrm{Mo}(\mathrm{O}) \mathrm{S}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)-\right.} \\ \left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{3}\right]\end{array}\right.$
$M_{r}=1295.79$
Triclinic
$P \overline{1}$
$a=10.131(3) \AA$
$b=12.711(5) \AA$
$c=23.594(7) \AA$
$\alpha=87.27(3)^{\circ}$
$\beta=101.59(3)^{\circ}$
$\gamma=109.05(3)^{\circ}$
$V=2813(2) \AA^{\circ}$
$Z=2$
$D_{x}=1.53 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 19
reflections
$\theta=9-11^{\circ}$
$\mu=1.60 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rectangular
$0.22 \times 0.20 \times 0.12 \mathrm{~mm}$
Black

